V = 2122.5 (4) Å³

Mo $K\alpha$ radiation

 $0.16 \times 0.15 \times 0.14 \text{ mm}$

24284 measured reflections

5150 independent reflections

4060 reflections with $I > 2\sigma(I)$

 $\mu = 4.93 \text{ mm}^-$

T = 298 K

 $R_{\rm int} = 0.052$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[tetraaqua- μ_4 -fumarato-di- μ_3 -fumarato-dineodymium(III)] trihydrate]

Hong-ren Chen,^a Tian-sheng Tang,^a Jin Wang,^a Pei-lian Liu^a and Zeng Zhuo^{a,b}*

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and ^bKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China Correspondence e-mail: zhuosioc@vahoo.com.cn

Received 28 September 2011; accepted 3 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.030; wR factor = 0.075; data-to-parameter ratio = 16.2.

The title coordination polymer, $\{[Nd_2(C_4H_2O_4)_3(H_2O)_4]$. $3H_2O$, was synthesized by the reaction of neodymium(III) nitrate hexahydrate with fumaric acid in a water-methanol (7:3) solution. The asymmetric unit comprises two Nd^{3+} cations, three fumarate dianions (L^{2-}) , four aqua ligands and three uncoordinated water molecules. The carboxylate groups of the fumarate dianions exhibit different coordination modes. In one fumarate dianion, two carboxylate groups chelate two Nd³⁺ cations, while one of the O atoms is coordinated to another Nd³⁺ cation. Another fumarate dianion bridges three Nd³⁺ cations: one of the carboxylate groups chelates one Nd³⁺ cation, while the other carboxylate group bridges two Nd³⁺ cations in a monodentate mode. The third fumarate dianion bridges four Nd³⁺ cations, where one of the carboxylate groups chelates one Nd³⁺ cation and coordinates in a monodentate mode to a second Nd^{3+} , while the second carboxylate groups bridges two Nd³⁺ cations in a monodentate mode and one O atom is coordinated to one Nd³⁺ cation. The Nd³⁺ cations are in a distorted tricappedtrigonal prismatic environment and coordinated by seven O atoms from the fumarate ligands and two O atoms from water molecules. The Nd³⁺ cations are linked by two carboxylate O atoms and two carboxylate groups, generating infinite Nd-O chains to form a three-dimensional framework. There are O- $H \cdots O$ and $C - H \cdots O$ hydrogen-bonding interactions between the coordinated and uncoordinated water molecules and carboxylate O atoms.

Related literature

For applications of metal complexes with carboxylato ligands, see: Eliseeva *et al.* (2010); Kim *et al.* (2001); Seki & Mori (2002).

Experimental

Crystal data

 $[\text{Nd}_2(\text{C}_4\text{H}_2\text{O}_4)_3(\text{H}_2\text{O})_4]\cdot 3\text{H}_2\text{O}$ $M_r = 756.76$ Monoclinic, $P2_1/n$ a = 9.5810 (9) Å b = 14.8675 (15) Å c = 14.9056 (14) Å $\beta = 91.538$ (5)°

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.459, T_{\rm max} = 0.501$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.030 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.075 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 5150 \text{ reflections} & \Delta\rho_{\text{max}} &= 1.36 \text{ e } \text{ Å}^{-3} \\ 306 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.89 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O2W−H2WA···O1	0.85	2.57	3.103 (13)	122
$O2W - H2WA \cdots O3$	0.85	2.52	3.319 (13)	158
$O2W - H2WB \cdot \cdot \cdot O1W^{i}$	0.85	2.53	2.98 (2)	114
O3W−H3WD···O24 ⁱ	0.85	2.07	2.896 (6)	165
$O3W - H3WC \cdot \cdot \cdot O1W$	0.85	2.12	2.60 (2)	115
$O3W - H3WC \cdot \cdot \cdot O2W$	0.85	2.08	2.911 (13)	165
$O1W - H1WD \cdots O2W$	0.85	2.06	2.634 (19)	124
$O1W-H1WC\cdots O6^{ii}$	0.85	2.11	2.959 (17)	178
$O8-H8C\cdots O3W^{iii}$	0.85	2.05	2.829 (5)	152
$O8-H8B\cdots O1^{iv}$	0.85	1.91	2.745 (5)	169
$O13-H13A\cdots O3W^{iii}$	0.85	2.14	2.938 (6)	157
$O13-H13B\cdots O25^{v}$	0.82	2.02	2.787 (5)	157
$O14-H14A\cdots O12^{vi}$	0.86 (6)	1.88 (6)	2.740 (5)	172 (6)
$O14-H14B\cdots O4^{iii}$	0.75 (5)	2.04 (6)	2.776 (5)	166 (6)
$O16-H16A\cdots O27^{vii}$	0.72	2.02	2.714 (5)	160
$O16-H16C\cdots O2^{viii}$	0.85	2.07	2.915 (5)	171
$C3-H3\cdots O24^{v}$	0.93	2.53	3.345 (6)	147
$C8-H8\cdots O12^{iv}$	0.93	2.58	3.417 (6)	150

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (iv) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (v) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (vi) -x + 1, -y + 2, -z + 1; (vii) x + 1, y, z; (viii) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$. Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the support of the Department of Science and Technology, Guangdong Province (grant No. 2010 A020507001–76, 5300410, FIPL-05–003)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2264).

References

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Eliseeva, S. V., Pleshkov, D. N., Lyssenko, K. A., Lepnev, L. S., Buenzli, J. C. G. & Kuzminat, N. P. (2010). *Inorg. Chem.* **49**, 9300–9311.

Kim, Y. J., Lee, E. W. & Jung, D. Y. (2001). Chem. Mater. 13, 2684–2690.

Seki, K. & Mori, W. (2002). J. Phys. Chem. B, 106, 1380-1385.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, m1717-m1718 [doi:10.1107/S1600536811046447]

Poly[[tetraaqua- μ_4 -fumarato-di- μ_3 -fumarato-dineodymium(III)] trihydrate]

H. Chen, T. Tang, J. Wang, P. Liu and Z. Zhuo

Comment

Recently, many metal complexes of carboxylates and lanthanide complexes which display interesting properties have been reported: Mn dicarboxylate compounds present antiferromagnetic interactions (Kim *et al.*, 2001), while Cu dicarboxylates have uniform micropores, high porosities and gas adsorption capacities (Seki *et al.*, 2002). In addition, lanthanide complexes can be used as active materials in luminescent devices (Eliseeva *et al.*, 2010). In this paper, we report the title complex, obtained by the reaction of neodymium(III) nitrate hexahydrate with fumaric acid in a water-methanol (7:3) solution.

The structure of the asymmetric unit of the title complex is shown in Fig. 1. It comprises two Nd^{3+} cations, three fumarate dianions (L^{2-}), four aqua ligands and three uncoordinated water molecules. The carboxylate groups of the fumarate dianion exhibit different coordination modes. In one fumarate dianion two carboxylate groups chelate with two Nd^{3+} cations, while one of the O atoms (O11) is coordinated with another Nd^{3+} cation. The second fumarate dianion bridges three Nd^{3+} cations, one of carboxylate groups chelating with one Nd^{3+} cation and the other carboxylate groups bridging two Nd^{3+} cations in monodentate mode. The third fumarate ligand bridges four Nd^{3+} cations, one of carboxylate groups chelating with one Nd^{3+} cations in monodentate mode. The third fumarate ligand bridges four Nd^{3+} cations, one of carboxylate groups chelating with one Nd^{3+} cations in monodentate mode. The third fumarate ligand bridges four Nd^{3+} cations, one of carboxylate groups chelating with one Nd^{3+} cations in monodentate mode. The third fumarate ligand bridges four Nd^{3+} cations, one of carboxylate groups chelating with one Nd^{3+} cations and one of carboxylate groups bridging two Nd^{3+} cations in monodentate mode, while one O atom (O3) is coordinated with a third Nd^{3+} cation. The Nd^{3+} cations are situated within a distorted tricapped trigonal prism and coordinated by seven O atoms from the fumarate dianion ligands and two O atom from water molecules. The Nd^{3+} cations are linked by two carboxylate O atoms (O3 and O11) and two carboxylate groups (O5—C5—O6 and O26—C18—O27) to generate infinite neodymium-oxygen chains (Fig. 2). The chains are further connected by the ligands to form a three-dimensional framework. The crystal is stabilized by hydrogen bond interactions between the coordinated and uncoordinated water molecules and the carboxylate O atoms (Table 1).

Experimental

Fumaric acid (0.3 mmol, 0.035 g) and neodymium(III) nitrate hexahydrate(0.5 mmol, 0.22 g) were dissolved in a watermethanol(7:3) solution (10 ml). The mixture was transferred to a 20 ml Teflon-lined stainless steel autoclave, which was heated at 443 K for 96 h. The reactor was cooled to room temperature over a period of 24 h. Green crystals were obtained after filtration, washing with water and vacum drying.

Refinement

Carbon-bound H atoms were included in the riding-model approximation, with C—H=0.93Å and with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atoms of the water molecules were located in Fourier difference maps and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(O)$. **Figures**

Fig. 1. View of the local coordination sphere around the neodymium(III) centers with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (A)1 + x,y,z; (B)2 - x,1 - y,1 - z; (C)1/2 + x,3/2 - y,1/2 + z.]

Fig. 2. Perspective view of the crystal packing.

F(000) = 1456.0 $D_x = 2.368 \text{ Mg m}^{-3}$

 $\theta = 2.5 - 28.0^{\circ}$ $\mu = 4.93 \text{ mm}^{-1}$ T = 298 KBlock, green

 $0.16\times0.15\times0.14~mm$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 6284 reflections

Poly[[tetraaqua-µ₄-fumarato-di-µ₃-fumarato-dineodymium(III)] trihydrate]

Crystal data

$[Nd_2(C_4H_2O_4)_3(H_2O)_4] \cdot 3H_2O$
$M_r = 756.76$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 9.5810 (9) Å
<i>b</i> = 14.8675 (15) Å
c = 14.9056 (14) Å
$\beta = 91.538 \ (5)^{\circ}$
$V = 2122.5 (4) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD diffractometer	5150 independent reflections
Radiation source: fine-focus sealed tube	4060 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.052$
phi and ω scans	$\theta_{\text{max}} = 28.1^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.459, \ T_{\max} = 0.501$	$k = -19 \rightarrow 19$
24284 measured reflections	$l = -15 \rightarrow 19$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.075$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0302P)^{2} + 2.6259P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
5150 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
306 parameters	$\Delta \rho_{max} = 1.36 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.89 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Nd1	1.02953 (3)	0.663992 (15)	0.246217 (16)	0.01439 (7)
Nd2	0.80991 (2)	0.846421 (15)	0.405801 (16)	0.01358 (7)
01	0.5842 (3)	0.7709 (2)	0.4569 (2)	0.0234 (8)
C3	0.2687 (5)	0.8568 (3)	0.3655 (3)	0.0227 (11)
Н3	0.3058	0.8783	0.3127	0.027*
O2	0.5619 (3)	0.8871 (2)	0.3665 (2)	0.0264 (8)
C1	0.5090 (5)	0.8282 (3)	0.4166 (3)	0.0189 (10)
C2	0.3555 (5)	0.8281 (4)	0.4280 (4)	0.0291 (12)
H2	0.3202	0.8068	0.4815	0.035*
O3	0.7836 (3)	0.7226 (2)	0.2985 (2)	0.0248 (8)
O4	0.7899 (3)	0.6470 (2)	0.1732 (2)	0.0241 (8)
C4	0.7199 (5)	0.6861 (3)	0.2319 (3)	0.0186 (10)
O6	1.0906 (4)	0.6561 (2)	0.4082 (2)	0.0288 (8)
C5	1.0122 (6)	0.6644 (3)	0.4739 (3)	0.0215 (11)
05	0.9116 (4)	0.7183 (2)	0.4785 (2)	0.0312 (9)
08	1.0189 (4)	0.7802 (2)	0.1277 (2)	0.0342 (9)
H8B	1.0470	0.7594	0.0782	0.041*
H8C	1.0621	0.8282	0.1422	0.041*
C8	0.4972 (5)	0.6643 (3)	0.1528 (3)	0.0229 (11)
H8	0.5490	0.6512	0.1025	0.028*
C6	0.1155 (5)	0.8573 (3)	0.3732 (3)	0.0167 (10)
C7	0.5665 (5)	0.6870 (3)	0.2248 (3)	0.0249 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7	0.5169	0.7049	0.2745	0.030*
C10	1.0375 (5)	0.6029 (3)	0.5517 (3)	0.0238 (11)
H10	1.1223	0.5725	0.5560	0.029*
C9	0.9469 (6)	0.5895 (3)	0.6139 (3)	0.0284 (12)
Н9	0.8705	0.6280	0.6170	0.034*
011	0.0390 (3)	0.8180 (2)	0.3136 (2)	0.0191 (7)
O12	0.0605 (3)	0.8974 (2)	0.4368 (2)	0.0283 (8)
O14	0.7818 (4)	1.0060 (2)	0.4411 (3)	0.0310 (9)
O13	0.8092 (4)	0.9288 (3)	0.2613 (2)	0.0359 (9)
H13A	0.8857	0.9226	0.2344	0.043*
H13B	0.7472	0.9489	0.2284	0.043*
O16	1.0338 (3)	0.5710 (2)	0.1065 (2)	0.0244 (8)
H16C	1.0155	0.5158	0.1155	0.029*
H16A	1.1004	0.5787	0.0861	0.029*
C17	0.9609 (6)	0.5154 (3)	0.6799 (3)	0.0229 (11)
O25	1.0774 (4)	0.4770 (2)	0.6945 (2)	0.0268 (8)
O24	0.8508 (4)	0.4865 (2)	0.7148 (2)	0.0280 (8)
C18	0.3435 (5)	0.6570 (3)	0.1423 (3)	0.0172 (10)
O26	0.2692 (3)	0.6793 (2)	0.2068 (2)	0.0264 (8)
O27	0.2955 (3)	0.6265 (2)	0.0686 (2)	0.0234 (8)
O2W	0.6477 (13)	0.5680 (8)	0.4310 (8)	0.236 (5)
H2WA	0.6803	0.6169	0.4106	0.354*
H2WB	0.7017	0.5507	0.4737	0.354*
O3W	0.4332 (5)	0.4644 (3)	0.3352 (3)	0.0568 (13)
H3WC	0.4845	0.5021	0.3634	0.085*
H3WD	0.3534	0.4878	0.3252	0.085*
H14A	0.833 (6)	1.032 (4)	0.482 (4)	0.043 (19)*
H14B	0.776 (6)	1.044 (4)	0.408 (4)	0.023 (16)*
O1W	0.3772 (16)	0.5909 (13)	0.4489 (10)	0.342 (10)
H1WD	0.4418	0.6067	0.4142	0.514*
H1WC	0.2950	0.6105	0.4385	0.514*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Nd1	0.01165 (14)	0.01670 (12)	0.01485 (13)	-0.00010 (9)	0.00092 (10)	-0.00118 (9)
Nd2	0.00971 (14)	0.01650 (12)	0.01448 (13)	0.00087 (9)	-0.00055 (9)	-0.00120 (9)
O1	0.0173 (19)	0.0271 (18)	0.0256 (19)	0.0033 (15)	-0.0008 (14)	0.0066 (15)
C3	0.016 (3)	0.030 (3)	0.022 (3)	-0.005 (2)	0.006 (2)	0.002 (2)
O2	0.0102 (18)	0.0298 (19)	0.039 (2)	0.0005 (14)	-0.0017 (15)	0.0124 (16)
C1	0.019 (3)	0.025 (2)	0.013 (2)	-0.003 (2)	0.0025 (19)	-0.0046 (18)
C2	0.016 (3)	0.045 (3)	0.026 (3)	0.001 (2)	0.006 (2)	0.009 (2)
O3	0.0194 (19)	0.0286 (18)	0.0262 (19)	-0.0038 (15)	-0.0014 (15)	-0.0119 (15)
O4	0.0141 (18)	0.0347 (19)	0.0235 (19)	-0.0003 (15)	-0.0001 (14)	-0.0118 (15)
C4	0.016 (3)	0.017 (2)	0.022 (3)	0.0004 (19)	0.002 (2)	0.0004 (19)
O6	0.040 (2)	0.0298 (19)	0.0168 (18)	0.0040 (16)	0.0007 (16)	0.0004 (14)
C5	0.031 (3)	0.017 (2)	0.016 (2)	0.000 (2)	-0.002 (2)	0.0009 (18)
O5	0.034 (2)	0.0296 (19)	0.030 (2)	0.0101 (17)	0.0015 (17)	0.0109 (16)

08	0.052 (3)	0.0264 (19)	0.024 (2)	-0.0025 (18)	0.0027 (18)	-0.0020 (16)
C8	0.016 (3)	0.034 (3)	0.019 (3)	0.004 (2)	0.005 (2)	-0.002 (2)
C6	0.013 (2)	0.020 (2)	0.017 (2)	0.0006 (19)	0.0011 (19)	0.0031 (18)
C7	0.015 (3)	0.034 (3)	0.025 (3)	0.001 (2)	0.002 (2)	-0.011 (2)
C10	0.029 (3)	0.021 (2)	0.021 (3)	0.005 (2)	-0.005 (2)	0.004 (2)
C9	0.035 (3)	0.021 (2)	0.030 (3)	0.009 (2)	0.001 (2)	0.006 (2)
O11	0.0153 (18)	0.0236 (16)	0.0183 (17)	-0.0007 (14)	-0.0018 (14)	-0.0039 (13)
O12	0.0138 (18)	0.041 (2)	0.031 (2)	-0.0051 (16)	0.0035 (15)	-0.0138 (17)
O14	0.043 (3)	0.0159 (18)	0.033 (2)	0.0024 (17)	-0.0169 (19)	-0.0004 (17)
O13	0.029 (2)	0.049 (2)	0.030 (2)	0.0144 (19)	0.0089 (17)	0.0166 (18)
O16	0.0199 (19)	0.0240 (17)	0.030 (2)	-0.0037 (15)	0.0067 (15)	-0.0051 (15)
C17	0.033 (3)	0.018 (2)	0.018 (2)	0.000 (2)	0.000 (2)	0.0011 (19)
O25	0.025 (2)	0.0219 (17)	0.033 (2)	-0.0031 (15)	-0.0052 (16)	0.0079 (15)
O24	0.030 (2)	0.0263 (18)	0.028 (2)	0.0038 (16)	0.0063 (16)	0.0026 (15)
C18	0.011 (2)	0.020 (2)	0.020 (2)	0.0007 (18)	0.0020 (19)	0.0015 (18)
O26	0.0138 (19)	0.042 (2)	0.0239 (19)	-0.0025 (15)	0.0050 (15)	-0.0083 (16)
O27	0.0188 (19)	0.0361 (19)	0.0151 (17)	-0.0072 (15)	-0.0027 (14)	0.0018 (14)
O2W	0.251 (14)	0.170 (10)	0.285 (15)	-0.001 (10)	-0.021 (11)	0.011 (10)
O3W	0.054 (3)	0.040 (3)	0.076 (4)	0.005 (2)	-0.001 (3)	-0.011 (2)
O1W	0.264 (16)	0.44 (3)	0.32 (2)	-0.100 (17)	-0.051 (14)	0.098 (19)

Geometric parameters (Å, °)

Nd1—O26 ⁱ	2.397 (3)	O8—H8C	0.8501
Nd1—O8	2.471 (3)	C8—C7	1.291 (7)
Nd1—O6	2.473 (3)	C8—C18	1.480 (7)
Nd1—O11 ⁱ	2.501 (3)	C8—H8	0.9300
Nd1—O16	2.502 (3)	C6—O12	1.249 (5)
Nd1—O25 ⁱⁱ	2.504 (3)	C6—O11	1.276 (5)
Nd1—O4	2.527 (3)	C6—Nd2 ^{iv}	2.985 (5)
Nd1—O4	2.527 (3)	С7—Н7	0.9300
Nd1—O24 ⁱⁱ	2.573 (3)	C10—C9	1.302 (7)
Nd1—O3	2.649 (3)	C10—H10	0.9300
Nd1—O3	2.649 (3)	C9—C17	1.482 (6)
Nd1—C17 ⁱⁱ	2.886 (5)	С9—Н9	0.9300
Nd2—O5	2.387 (3)	O11—Nd1 ^{iv}	2.501 (3)
Nd2—O14	2.446 (4)	O11—Nd2 ^{iv}	2.655 (3)
Nd2—O3	2.447 (3)	O12—Nd2 ^{iv}	2.548 (3)
Nd2—O3	2.447 (3)	O14—H14A	0.86 (6)
Nd2—O27 ⁱⁱⁱ	2.467 (3)	O14—H14B	0.75 (5)
Nd2—O13	2.477 (3)	O13—H13A	0.8499
Nd2—O2	2.507 (3)	O13—H13B	0.8175
Nd2—O12 ⁱ	2.548 (3)	O16—H16C	0.8499
Nd2—O1	2.570 (3)	O16—H16A	0.7231
Nd2—O11 ⁱ	2.655 (3)	C17—O24	1.265 (6)
Nd2—C6 ⁱ	2.985 (5)	C17—O25	1.267 (6)

01—C1	1.258 (5)	C17—Nd1 ⁱⁱ	2.886 (5)
C3—C2	1.304 (7)	O25—Nd1 ⁱⁱ	2.504 (3)
C3—C6	1.475 (7)	O24—Nd1 ⁱⁱ	2.573 (3)
С3—Н3	0.9300	C18—O26	1.257 (5)
O2—C1	1.266 (5)	C18—O27	1.264 (6)
C1—C2	1.484 (7)	O26—Nd1 ^{iv}	2.397 (3)
C2—H2	0.9300	O27—Nd2 ^v	2.467 (3)
03—03	0.000 (7)	O2W—O2W	0.00(2)
O3—C4	1.274 (5)	O2W—O2W	0.00(2)
O4—O4	0.000 (7)	O2W—H2WA	0.8500
O4—C4	1.259 (5)	O2W—H2WB	0.8499
C4—O4	1.259 (5)	O3W—O3W	0.000 (16)
C4—O3	1.274 (5)	O3W—H3WC	0.8500
C4—C7	1.471 (7)	O3W—H3WD	0.8500
06-05	1.256 (6)	OIW_OIW	0.00 (4)
C5	1.256 (6)	OIW_HIWC	0.8500
O8—H8B	0.8500	01w—mwc	0.8302
O26 ⁱ —Nd1—O8	77.26 (12)	O2—Nd2—O11 ⁱ	135.19 (11)
O26 ⁱ —Nd1—O6	92.32 (12)	O12 ⁱ —Nd2—O11 ⁱ	49.67 (10)
O8—Nd1—O6	137.38 (11)	O1—Nd2—O11 ⁱ	142.94 (10)
O26 ⁱ —Nd1—O11 ⁱ	89.22 (11)	O5—Nd2—C6 ⁱ	74.15 (12)
O8—Nd1—O11 ⁱ	69.37 (11)	O14—Nd2—C6 ⁱ	95.55 (13)
06—Nd1—011 ⁱ	69.27 (11)	O3—Nd2—C6 ⁱ	91.06 (12)
O26 ⁱ —Nd1—O16	79.13 (11)	O3—Nd2—C6 ⁱ	91.06 (12)
O8—Nd1—O16	78.01 (11)	O27 ⁱⁱⁱ —Nd2—C6 ⁱ	103.44 (12)
O6—Nd1—O16	141.11 (11)	O13—Nd2—C6 ⁱ	79.12 (12)
O11 ⁱ —Nd1—O16	147.08 (11)	O2—Nd2—C6 ⁱ	151.25 (12)
O26 ⁱ —Nd1—O25 ⁱⁱ	124.75 (12)	$O12^{i}$ —Nd2—C6 ⁱ	24.49 (11)
O8—Nd1—O25 ⁱⁱ	145.90 (12)	O1—Nd2—C6 ⁱ	155.32 (11)
O6—Nd1—O25 ⁱⁱ	72.77 (11)	O11 ⁱ —Nd2—C6 ⁱ	25.30 (11)
O11 ⁱ —Nd1—O25 ⁱⁱ	129.43 (11)	C1—O1—Nd2	92.2 (3)
O16—Nd1—O25 ⁱⁱ	81.22 (11)	C2—C3—C6	124.3 (5)
O26 ⁱ —Nd1—O4	140.31 (11)	С2—С3—Н3	117.8
O8—Nd1—O4	75.09 (12)	С6—С3—Н3	117.8
O6—Nd1—O4	127.20 (12)	C1—O2—Nd2	95.0 (3)
O11 ⁱ —Nd1—O4	106.71 (10)	O1—C1—O2	121.1 (4)
O16—Nd1—O4	67.72 (10)	O1—C1—C2	120.1 (4)
O25 ⁱⁱ —Nd1—O4	72.11 (11)	O2—C1—C2	118.8 (4)
O26 ⁱ —Nd1—O4	140.31 (11)	C3—C2—C1	122.2 (5)
O8—Nd1—O4	75.09 (12)	C3—C2—H2	118.9
O6—Nd1—O4	127.20 (12)	C1—C2—H2	118.9
O11 ⁱ —Nd1—O4	106.71 (10)	O3—O3—C4	0(10)
O16—Nd1—O4	67.72 (10)	O3—O3—Nd2	0(10)

O25 ⁱⁱ —Nd1—O4	72.11 (11)	C4—O3—Nd2	150.4 (3)
O4—Nd1—O4	0.00 (16)	O3—O3—Nd1	0(6)
O26 ⁱ —Nd1—O24 ⁱⁱ	73.38 (12)	C4—O3—Nd1	92.4 (3)
O8—Nd1—O24 ⁱⁱ	141.13 (11)	Nd2—O3—Nd1	111.28 (12)
O6—Nd1—O24 ⁱⁱ	69.25 (11)	O4—O4—C4	0(10)
O11 ⁱ —Nd1—O24 ⁱⁱ	133.95 (11)	O4—O4—Nd1	0(3)
O16—Nd1—O24 ⁱⁱ	71.95 (11)	C4—O4—Nd1	98.6 (3)
O25 ⁱⁱ —Nd1—O24 ⁱⁱ	51.45 (11)	O4—C4—O4	0.0 (3)
O4—Nd1—O24 ⁱⁱ	113.85 (11)	O4—C4—O3	119.0 (4)
O4—Nd1—O24 ⁱⁱ	113.85 (11)	O4—C4—O3	119.0 (4)
O26 ⁱ —Nd1—O3	155.04 (11)	O4—C4—O3	119.0 (4)
O8—Nd1—O3	87.75 (11)	O4—C4—O3	119.0 (4)
O6—Nd1—O3	85.27 (11)	O3—C4—O3	0.0 (3)
O11 ⁱ —Nd1—O3	66.66 (10)	O4—C4—C7	120.3 (4)
O16—Nd1—O3	117.47 (10)	O4—C4—C7	120.3 (4)
O25 ⁱⁱ —Nd1—O3	78.22 (11)	O3—C4—C7	120.6 (4)
O4—Nd1—O3	49.80 (10)	O3—C4—C7	120.6 (4)
O4—Nd1—O3	49.80 (10)	C5—O6—Nd1	128.7 (3)
O24 ⁱⁱ —Nd1—O3	127.89 (11)	O6—C5—O5	125.6 (4)
O26 ⁱ —Nd1—O3	155.04 (11)	O6—C5—C10	117.2 (4)
O8—Nd1—O3	87.75 (11)	O5—C5—C10	117.2 (4)
O6—Nd1—O3	85.27 (11)	C5—O5—Nd2	142.0 (3)
O11 ⁱ —Nd1—O3	66.66 (10)	Nd1—O8—H8B	111.0
O16—Nd1—O3	117.47 (10)	Nd1—O8—H8C	113.2
O25 ⁱⁱ —Nd1—O3	78.22 (11)	H8B—O8—H8C	111.4
O4—Nd1—O3	49.80 (10)	C7—C8—C18	126.5 (5)
O4—Nd1—O3	49.80 (10)	С7—С8—Н8	116.8
O24 ⁱⁱ —Nd1—O3	127.89 (11)	С18—С8—Н8	116.8
O3—Nd1—O3	0.00 (6)	O12—C6—O11	120.1 (4)
O26 ⁱ —Nd1—C17 ⁱⁱ	99.25 (14)	O12—C6—C3	120.1 (4)
O8—Nd1—C17 ⁱⁱ	156.81 (12)	O11—C6—C3	119.8 (4)
O6—Nd1—C17 ⁱⁱ	65.09 (12)	O12—C6—Nd2 ^{iv}	57.8 (2)
O11 ⁱ —Nd1—C17 ⁱⁱ	133.80 (12)	O11—C6—Nd2 ^{iv}	62.7 (2)
O16—Nd1—C17 ⁱⁱ	78.82 (12)	C3—C6—Nd2 ^{iv}	174.0 (3)
O25 ⁱⁱ —Nd1—C17 ⁱⁱ	25.97 (12)	C8—C7—C4	123.2 (5)
O4—Nd1—C17 ⁱⁱ	95.22 (13)	С8—С7—Н7	118.4
O4—Nd1—C17 ⁱⁱ	95.22 (13)	С4—С7—Н7	118.4
O24 ⁱⁱ —Nd1—C17 ⁱⁱ	25.99 (12)	C9—C10—C5	123.3 (5)
O3—Nd1—C17 ⁱⁱ	102.18 (13)	C9—C10—H10	118.3
O3—Nd1—C17 ⁱⁱ	102.18 (13)	C5-C10-H10	118.3
O5—Nd2—O14	136.23 (13)	C10—C9—C17	122.4 (5)
O5—Nd2—O3	74.35 (12)	С10—С9—Н9	118.8
O14—Nd2—O3	149.32 (13)	С17—С9—Н9	118.8

O5—Nd2—O3	74.35 (12)	C6—O11—Nd1 ^{iv}	135.4 (3)	
O14—Nd2—O3	149.32 (13)	C6—O11—Nd2 ^{iv}	92.0 (3)	
O3—Nd2—O3	0.00 (10)	Nd1 ^{iv} —O11—Nd2 ^{iv}	109.38 (11)	
O5—Nd2—O27 ⁱⁱⁱ	73.51 (12)	C6—O12—Nd2 ^{iv}	97.7 (3)	
O14—Nd2—O27 ⁱⁱⁱ	67.73 (13)	Nd2—O14—H14A	121 (4)	
O3—Nd2—O27 ⁱⁱⁱ	139.28 (12)	Nd2—O14—H14B	127 (4)	
O3—Nd2—O27 ⁱⁱⁱ	139.28 (12)	H14A—O14—H14B	100 (5)	
O5—Nd2—O13	141.36 (12)	Nd2—O13—H13A	112.0	
O14—Nd2—O13	73.12 (14)	Nd2—O13—H13B	133.5	
O3—Nd2—O13	78.82 (12)	H13A—O13—H13B	112.2	
O3—Nd2—O13	78.82 (12)	Nd1—O16—H16C	113.1	
O27 ⁱⁱⁱ —Nd2—O13	140.84 (12)	Nd1—O16—H16A	107.2	
O5—Nd2—O2	132.21 (12)	H16C—O16—H16A	114.1	
O14—Nd2—O2	72.98 (13)	O24—C17—O25	121.1 (4)	
O3—Nd2—O2	87.02 (12)	O24—C17—C9	117.7 (5)	
O3—Nd2—O2	87.02 (12)	O25—C17—C9	120.9 (5)	
O27 ⁱⁱⁱ —Nd2—O2	96.50 (11)	O24—C17—Nd1 ⁱⁱ	63.1 (2)	
O13—Nd2—O2	72.36 (11)	O25—C17—Nd1 ⁱⁱ	60.0 (2)	
O5—Nd2—O12 ⁱ	77.49 (12)	C9—C17—Nd1 ⁱⁱ	160.5 (3)	
O14—Nd2—O12 ⁱ	77.37 (13)	C17—O25—Nd1 ⁱⁱ	94.1 (3)	
O3—Nd2—O12 ⁱ	114.97 (11)	C17—O24—Nd1 ⁱⁱ	91.0 (3)	
O3—Nd2—O12 ⁱ	114.97 (11)	O26—C18—O27	124.1 (4)	
O27 ⁱⁱⁱ —Nd2—O12 ⁱ	81.39 (11)	O26—C18—C8	118.8 (4)	
O13—Nd2—O12 ⁱ	89.50 (12)	O27—C18—C8	117.1 (4)	
O2—Nd2—O12 ⁱ	148.62 (12)	C18—O26—Nd1 ^{iv}	136.8 (3)	
O5—Nd2—O1	81.57 (11)	C18—O27—Nd2 ^v	140.2 (3)	
O14—Nd2—O1	105.16 (13)	O2W—O2W—O2W	0(10)	
O3—Nd2—O1	78.02 (11)	O2W—O2W—H2WA	0.0	
O3—Nd2—O1	78.02 (11)	O2W—O2W—H2WA	0.0	
O27 ⁱⁱⁱ —Nd2—O1	73.15 (11)	O2W—O2W—H2WB	0.0	
O13—Nd2—O1	119.40 (12)	O2W—O2W—H2WB	0.0	
O2—Nd2—O1	51.29 (10)	H2WA—O2W—H2WB	107.7	
O12 ⁱ —Nd2—O1	150.73 (11)	O3W—O3W—H3WC	0.0	
O5—Nd2—O11 ⁱ	76.98 (11)	O3W—O3W—H3WD	0.0	
O14—Nd2—O11 ⁱ	111.28 (12)	H3WC—O3W—H3WD	108.7	
O3—Nd2—O11 ⁱ	67.31 (10)	O1W—O1W—H1WD	0.0	
O3—Nd2—O11 ⁱ	67.31 (10)	O1W—O1W—H1WC	0.0	
O27 ⁱⁱⁱ —Nd2—O11 ⁱ	127.13 (10)	H1WD—O1W—H1WC	118.8	
013—Nd2—011 ⁱ	67.16 (11)			
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+2$, $-y+1$, $-z+1$; (iii) $x+1/2$, $-y+3/2$, $z+1/2$; (iv) $x-1$, y , z ; (v) $x-1/2$, $-y+3/2$, $z-1/2$.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A

O2W—H2WA…O1	0.85	2.57	3.103 (13)	122.
O2W—H2WA···O3	0.85	2.52	3.319 (13)	158.
O2W—H2WB…O1W ^{vi}	0.85	2.53	2.98 (2)	114.
O3W—H3WD····O24 ^{vi}	0.85	2.07	2.896 (6)	165.
O3W—H3WC…O1W	0.85	2.12	2.60 (2)	115.
O3W—H3WC···O2W	0.85	2.08	2.911 (13)	165.
O1W—H1WD···O2W	0.85	2.06	2.634 (19)	124.
O1W—H1WC···O6 ^{iv}	0.85	2.11	2.959 (17)	178.
O8—H8C···O3W ^{vii}	0.85	2.05	2.829 (5)	152.
O8—H8B…O1 ^{viii}	0.85	1.91	2.745 (5)	169.
O13—H13A····O3W ^{vii}	0.85	2.14	2.938 (6)	157.
O13—H13B····O25 ^v	0.82	2.02	2.787 (5)	157.
O14—H14A…O12 ^{ix}	0.86 (6)	1.88 (6)	2.740 (5)	172 (6)
O14—H14B····O4 ^{vii}	0.75 (5)	2.04 (6)	2.776 (5)	166 (6)
O16—H16A····O27 ⁱ	0.72	2.02	2.714 (5)	160.
O16—H16C···O2 ^x	0.85	2.07	2.915 (5)	171.
C3—H3····O24 ^v	0.93	2.53	3.345 (6)	147.
C8—H8····O12 ^{viii}	0.93	2.58	3.417 (6)	150.

Symmetry codes: (vi) -x+1, -y+1, -z+1; (iv) x-1, y, z; (vii) -x+3/2, y+1/2, -z+1/2; (viii) x+1/2, -y+3/2, z-1/2; (v) x-1/2, -y+3/2, -y+3/2, -y+3/2; (v) x-1/2, -y+3/2; (v) x-1/2, -y+3/2; (v) x-1/2, -y+3/2; (v) x-1/2; (v)

b

